64 research outputs found

    Efficacy of a Novel Injection Lipolysis to Induce Targeted Adipocyte Apoptosis: A Randomized, Phase IIa Study of CBL-514 Injection on Abdominal Subcutaneous Fat Reduction

    Get PDF
    Background: CBL-514 is a novel injectable drug that may be safe and efficacious for localized abdominal subcutaneous fat reduction. Objectives: The aim of this study was to assess the safety and efficacy of CBL-514 in reducing abdominal subcutaneous fat volume and thickness. Methods: This Phase IIa, open-label, random allocation study consisted of a 6-week treatment period and follow-up at 4 and 8 weeks following the last treatment. Participants were randomly allocated to receive 1.2 mg/cm2 (180 mg), 1.6 mg/cm2 (240 mg), or 2.0 mg/cm2 (300 mg) of CBL-514 with up to 4 treatments, each comprising 60 injections into the abdominal adipose layer. Changes in abdominal subcutaneous fat were assessed by ultrasound at follow-up visits. Treatment-emergent adverse events were recorded. Results: Higher doses of CBL-514 (unit dose, 2.0 and 1.6 mg/cm2) significantly improved the absolute and percentage reduction in abdominal fat volume (P < 0.00001) and thickness (P < 0.0001) compared with baseline. Although the COVID-19 pandemic halted some participant recruitment and follow-ups, analysis was unaffected, even after sample size limitations. Conclusions: CBL-514 injection at multiple doses up to 300 mg with a unit dose of 2.0 mg/cm2 is safe, well-tolerated, and reduced abdominal fat volume and thickness by inducing adipocyte apoptosis. Although other procedures exist to treat abdominal fat, they have limitations and may cause complications. At a dose of 2.0 mg/cm2, CBL-514 safely and significantly reduced abdominal fat volume by 24.96%, making it a promising new treatment for routine, nonsurgical abdominal fat reduction in dermatologic clinics. Level of Evidence: 4

    Transculturalization of a Diabetes-Specific Nutrition Algorithm: Asian Application

    Get PDF
    The prevalence of type 2 diabetes (T2D) in Asia is growing at an alarming rate, posing significant clinical and economic risk to health care stakeholders. Commonly, Asian patients with T2D manifest a distinctive combination of characteristics that include earlier disease onset, distinct pathophysiology, syndrome of complications, and shorter life expectancy. Optimizing treatment outcomes for such patients requires a coordinated inclusive care plan and knowledgeable practitioners. Comprehensive management starts with medical nutrition therapy (MNT) in a broader lifestyle modification program. Implementing diabetes-specific MNT in Asia requires high-quality and transparent clinical practice guidelines (CPGs) that are regionally adapted for cultural, ethnic, and socioeconomic factors. Respected CPGs for nutrition and diabetes therapy are available from prestigious medical societies. For cost efficiency and effectiveness, health care authorities can select these CPGs for Asian implementation following abridgement and cultural adaptation that includes: defining nutrition therapy in meaningful ways, selecting lower cutoff values for healthy body mass indices and waist circumferences (WCs), identifying the dietary composition of MNT based on regional availability and preference, and expanding nutrition therapy for concomitant hypertension, dyslipidemia, overweight/obesity, and chronic kidney disease. An international task force of respected health care professionals has contributed to this process. To date, task force members have selected appropriate evidence-based CPGs and simplified them into an algorithm for diabetes-specific nutrition therapy. Following cultural adaptation, Asian and Asian-Indian versions of this algorithmic tool have emerged. The Asian version is presented in this report

    Epithelial Tissues Have Varying Degrees of Susceptibility to KrasG12D-Initiated Tumorigenesis in a Mouse Model

    Get PDF
    Activating mutations in the Kras gene are commonly found in some but not all epithelial cancers. In order to understand the susceptibility of different epithelial tissues to Kras-induced tumorigenesis, we introduced one of the most common Kras mutations, KrasG12D, broadly in epithelial tissues. We used a mouse model in which the G12D mutation is placed in the endogenous Kras locus controlled by inducible, Cre-mediated recombination in tissues expressing cytokeratin 19 including the oral cavity, GI tract, lungs, and ducts of the liver, kidney, and the pancreas. Introduction of the KrasG12D mutation in adult mouse tissues led to neoplastic changes in some but not all of these tissues. Notably, many hyperplasias, metaplasias and adenomas were observed in the oral cavity, stomach, colon and lungs, suggesting that exposure to products of the outside environment promotes KrasG12D-initiated tumorigenesis. However, environmental exposure did not consistently correlate with tumor formation, such as in the small intestine, suggesting that there are also intrinsic differences in susceptibility to Kras activation. The pancreas developed small numbers of mucinous metaplasias with characteristics of early stage pancreatic intraepithelial neoplasms (PanINs), supporting the hypothesis that pancreatic ducts have the potential to give rise pancreatic cancer

    Folding of Matrix Metalloproteinase-2 Prevents Endogenous Generation of MHC Class-I Restricted Epitope

    Get PDF
    BACKGROUND: We previously demonstrated that the matrix metalloproteinase-2 (MMP-2) contained an antigenic peptide recognized by a CD8 T cell clone in the HLA-A*0201 context. The presentation of this peptide on class I molecules by human melanoma cells required a cross-presentation mechanism. Surprisingly, the classical endogenous processing pathway did not process this MMP-2 epitope. METHODOLOGY/PRINCIPAL FINDINGS: By PCR directed mutagenesis we showed that disruption of a single disulfide bond induced MMP-2 epitope presentation. By Pulse-Chase experiment, we demonstrated that disulfide bonds stabilized MMP-2 and impeded its degradation. Finally, using drugs, we documented that mutated MMP-2 epitope presentation used the proteasome and retrotranslocation complex. CONCLUSIONS/SIGNIFICANCE: These data appear crucial to us since they established the existence of a new inhibitory mechanism for the generation of a T cell epitope. In spite of MMP-2 classified as a self-antigen, the fact that cross-presentation is the only way to present this MMP-2 epitope underlines the importance to target this type of antigen in immunotherapy protocols

    Dynamic temporary blood facility location-allocation during and post-disaster periods

    Get PDF
    The key objective of this study is to develop a tool (hybridization or integration of different techniques) for locating the temporary blood banks during and post-disaster conditions that could serve the hospitals with minimum response time. We have used temporary blood centers, which must be located in such a way that it is able to serve the demand of hospitals in nearby region within a shorter duration. We are locating the temporary blood centres for which we are minimizing the maximum distance with hospitals. We have used Tabu search heuristic method to calculate the optimal number of temporary blood centres considering cost components. In addition, we employ Bayesian belief network to prioritize the factors for locating the temporary blood facilities. Workability of our model and methodology is illustrated using a case study including blood centres and hospitals surrounding Jamshedpur city. Our results shows that at-least 6 temporary blood facilities are required to satisfy the demand of blood during and post-disaster periods in Jamshedpur. The results also show that that past disaster conditions, response time and convenience for access are the most important factors for locating the temporary blood facilities during and post-disaster periods

    Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations : A transethnic genome-wide meta-analysis

    Get PDF
    Background Glycated hemoglobin (HbA1c) is used to diagnose type 2 diabetes (T2D) and assess glycemic control in patients with diabetes. Previous genome-wide association studies (GWAS) have identified 18 HbA1c-associated genetic variants. These variants proved to be classifiable by their likely biological action as erythrocytic (also associated with erythrocyte traits) or glycemic (associated with other glucose-related traits). In this study, we tested the hypotheses that, in a very large scale GWAS, we would identify more genetic variants associated with HbA1c and that HbA1c variants implicated in erythrocytic biology would affect the diagnostic accuracy of HbA1c. We therefore expanded the number of HbA1c-associated loci and tested the effect of genetic risk-scores comprised of erythrocytic or glycemic variants on incident diabetes prediction and on prevalent diabetes screening performance. Throughout this multiancestry study, we kept a focus on interancestry differences in HbA1c genetics performance that might influence race-ancestry differences in health outcomes. Methods & findings Using genome-wide association meta-analyses in up to 159,940 individuals from 82 cohorts of European, African, East Asian, and South Asian ancestry, we identified 60 common genetic variants associated with HbA1c. We classified variants as implicated in glycemic, erythrocytic, or unclassified biology and tested whether additive genetic scores of erythrocytic variants (GS-E) or glycemic variants (GS-G) were associated with higher T2D incidence in multiethnic longitudinal cohorts (N = 33,241). Nineteen glycemic and 22 erythrocytic variants were associated with HbA1c at genome-wide significance. GS-G was associated with higher T2D risk (incidence OR = 1.05, 95% CI 1.04-1.06, per HbA1c-raising allele, p = 3 x 10-29); whereas GS-E was not (OR = 1.00, 95% CI 0.99-1.01, p = 0.60). In Europeans and Asians, erythrocytic variants in aggregate had only modest effects on the diagnostic accuracy of HbA1c. Yet, in African Americans, the X-linked G6PD G202A variant (T-allele frequency 11%) was associated with an absolute decrease in HbA1c of 0.81%-units (95% CI 0.66-0.96) per allele in hemizygous men, and 0.68%-units (95% CI 0.38-0.97) in homozygous women. The G6PD variant may cause approximately 2% (N = 0.65 million, 95% CI0.55-0.74) of African American adults with T2Dto remain undiagnosed when screened with HbA1c. Limitations include the smaller sample sizes for non-European ancestries and the inability to classify approximately one-third of the variants. Further studies in large multiethnic cohorts with HbA1c, glycemic, and erythrocytic traits are required to better determine the biological action of the unclassified variants. Conclusions As G6PD deficiency can be clinically silent until illness strikes, we recommend investigation of the possible benefits of screening for the G6PD genotype along with using HbA1c to diagnose T2D in populations of African ancestry or groups where G6PD deficiency is common. Screening with direct glucose measurements, or genetically-informed HbA1c diagnostic thresholds in people with G6PD deficiency, may be required to avoid missed or delayed diagnoses.Peer reviewe

    Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes

    Get PDF
    We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P &lt; 2.2 × 10-7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.</p

    Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes

    Get PDF
    BACKGROUND: Data are lacking on the long-term effect on cardiovascular events of adding sitagliptin, a dipeptidyl peptidase 4 inhibitor, to usual care in patients with type 2 diabetes and cardiovascular disease. METHODS: In this randomized, double-blind study, we assigned 14,671 patients to add either sitagliptin or placebo to their existing therapy. Open-label use of antihyperglycemic therapy was encouraged as required, aimed at reaching individually appropriate glycemic targets in all patients. To determine whether sitagliptin was noninferior to placebo, we used a relative risk of 1.3 as the marginal upper boundary. The primary cardiovascular outcome was a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. RESULTS: During a median follow-up of 3.0 years, there was a small difference in glycated hemoglobin levels (least-squares mean difference for sitagliptin vs. placebo, -0.29 percentage points; 95% confidence interval [CI], -0.32 to -0.27). Overall, the primary outcome occurred in 839 patients in the sitagliptin group (11.4%; 4.06 per 100 person-years) and 851 patients in the placebo group (11.6%; 4.17 per 100 person-years). Sitagliptin was noninferior to placebo for the primary composite cardiovascular outcome (hazard ratio, 0.98; 95% CI, 0.88 to 1.09; P<0.001). Rates of hospitalization for heart failure did not differ between the two groups (hazard ratio, 1.00; 95% CI, 0.83 to 1.20; P = 0.98). There were no significant between-group differences in rates of acute pancreatitis (P = 0.07) or pancreatic cancer (P = 0.32). CONCLUSIONS: Among patients with type 2 diabetes and established cardiovascular disease, adding sitagliptin to usual care did not appear to increase the risk of major adverse cardiovascular events, hospitalization for heart failure, or other adverse events

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility.

    Get PDF
    Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (β=-0.09±0.01 mmol l(-1), P=3.4 × 10(-12)), T2D risk (OR[95%CI]=0.86[0.76-0.96], P=0.010), early insulin secretion (β=-0.07±0.035 pmolinsulin mmolglucose(-1), P=0.048), but higher 2-h glucose (β=0.16±0.05 mmol l(-1), P=4.3 × 10(-4)). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02±0.004 mmol l(-1), P=1.3 × 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.CHARGE: Funding support for ‘Building on GWAS for NHLBI-diseases: the U.S. CHARGE consortium’ was provided by the NIH through the American Recovery and Reinvestment Act of 2009 (ARRA) (5RC2HL102419). Sequence data for ‘Building on GWAS for NHLBI-diseases: the U.S. CHARGE consortium’ was provided by Eric Boerwinkle on behalf of the Atherosclerosis Risk in Communities (ARIC) Study, L. Adrienne Cupples, principal investigator for the Framingham Heart Study, and Bruce Psaty, principal investigator for the Cardiovascular Health Study. Sequencing was carried out at the Baylor Genome Center (U54 HG003273). Further support came from HL120393, ‘Rare variants and NHLBI traits in deeply phenotyped cohorts’ (Bruce Psaty, principal investigator). Supporting funding was also provided by NHLBI with the CHARGE infrastructure grant HL105756. In addition, M.J.P. was supported through the 2014 CHARGE Visiting Fellow grant—HL105756, Dr Bruce Psaty, PI. ENCODE: ENCODE collaborators Ben Brown and Marcus Stoiber were supported by the LDRD# 14-200 (B.B. and M.S.) and 4R00HG006698-03 (B.B.) grants. AGES: This study has been funded by NIA contract N01-AG-12100 with contributions from NEI, NIDCD and NHLBI, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association) and the Althingi (the Icelandic Parliament). ARIC: The Atherosclerosis Risk in Communities (ARIC) Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute (NHLBI) contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C and HHSN268201100012C), R01HL087641, R01HL59367 and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. We thank the staff and participants of the ARIC study for their important contributions. Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research. CARDIA: The CARDIA Study is conducted and supported by the National Heart, Lung, and Blood Institute in collaboration with the University of Alabama at Birmingham (HHSN268201300025C & HHSN268201300026C), Northwestern University (HHSN268201300027C), University of Minnesota (HHSN268201300028C), Kaiser Foundation Research Institute (HHSN268201300029C), and Johns Hopkins University School of Medicine (HHSN268200900041C). CARDIA is also partially supported by the Intramural Research Program of the National Institute on Aging. Exome chip genotyping and data analyses were funded in part by grants U01-HG004729, R01-HL093029 and R01-HL084099 from the National Institutes of Health to Dr Myriam Fornage. This manuscript has been reviewed by CARDIA for scientific content. CHES: This work was supported in part by The Chinese-American Eye Study (CHES) grant EY017337, an unrestricted departmental grant from Research to Prevent Blindness, and the Genetics of Latinos Diabetic Retinopathy (GOLDR) Study grant EY14684. CHS: This CHS research was supported by NHLBI contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants HL080295, HL087652, HL103612, HL068986 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through AG023629 from the National Institute on Aging (NIA). A full list of CHS investigators and institutions can be found at http://www.chs-nhlbi.org/pi.htm. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The CoLaus Study: We thank the co-primary investigators of the CoLaus study, Gerard Waeber and Peter Vollenweider, and the PI of the PsyColaus Study Martin Preisig. We gratefully acknowledge Yolande Barreau, Anne-Lise Bastian, Binasa Ramic, Martine Moranville, Martine Baumer, Marcy Sagette, Jeanne Ecoffey and Sylvie Mermoud for their role in the CoLaus data collection. The CoLaus study was supported by research grants from GlaxoSmithKline and from the Faculty of Biology and Medicine of Lausanne, Switzerland. The PsyCoLaus study was supported by grants from the Swiss National Science Foundation (#3200B0–105993) and from GlaxoSmithKline (Drug Discovery—Verona, R&D). CROATIA-Korcula: The CROATIA-Korcula study would like to acknowledge the invaluable contributions of the recruitment team in Korcula, the administrative teams in Croatia and Edinburgh and the people of Korcula. Exome array genotyping was performed at the Wellcome Trust Clinical Research Facility Genetics Core at Western General Hospital, Edinburgh, UK. The CROATIA-Korcula study on the Croatian island of Korucla was supported through grants from the Medical Research Council UK and the Ministry of Science, Education and Sport in the Republic of Croatia (number 108-1080315-0302). EFSOCH: We are extremely grateful to the EFSOCH study participants and the EFSOCH study team. The opinions given in this paper do not necessarily represent those of NIHR, the NHS or the Department of Health. The EFSOCH study was supported by South West NHS Research and Development, Exeter NHS Research and Development, the Darlington Trust, and the Peninsula NIHR Clinical Research Facility at the University of Exeter. Timothy Frayling, PI, is supported by the European Research Council grant: SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC. EPIC-Potsdam: We thank all EPIC-Potsdam participants for their invaluable contribution to the study. The study was supported in part by a grant from the German Federal Ministry of Education and Research (BMBF) to the German Center for Diabetes Research (DZD e.V.). The recruitment phase of the EPIC-Potsdam study was supported by the Federal Ministry of Science, Germany (01 EA 9401) and the European Union (SOC 95201408 05 F02). The follow-up of the EPIC-Potsdam study was supported by German Cancer Aid (70-2488-Ha I) and the European Community (SOC 98200769 05 F02). Furthermore, we thank Ellen Kohlsdorf for data management as well as the follow-up team headed by Dr Manuala Bergmann for case ascertainment. ERF: The ERF study was supported by grants from the Netherlands Organization for Scientific Research (NWO) and a joint grant from NWO and the Russian Foundation for Basic research (Pionier, 047.016.009, 047.017.043), Erasmus MC, and the Centre for Medical Systems Biology (CMSB; National Genomics Initiative). Exome sequencing analysis in ERF was supported by the ZonMw grant (91111025). For the ERF Study, we are grateful to all participants and their relatives, to general practitioners and neurologists for their contributions, to P. Veraart for her help in genealogy and to P. Snijders for his help in data collection. FamHS: The Family Heart Study (FamHS) was supported by NIH grants R01-HL-087700 and R01-HL-088215 (Michael A. Province, PI) from NHLBI; and R01-DK-8925601 and R01-DK-075681 (Ingrid B. Borecki, PI) from NIDDK. FENLAND: The Fenland Study is funded by the Medical Research Council (MC_U106179471) and Wellcome Trust. We are grateful to all the volunteers for their time and help, and to the General Practitioners and practice staff for assistance with recruitment. We thank the Fenland Study Investigators, Fenland Study Co-ordination team and the Epidemiology Field, Data and Laboratory teams. The Fenland Study is funded by the Medical Research Council (MC_U106179471) and Wellcome Trust. FHS: Genotyping, quality control and calling of the Illumina HumanExome BeadChip in the Framingham Heart Study was supported by funding from the National Heart, Lung and Blood Institute Division of Intramural Research (Daniel Levy and Christopher J. O’Donnell, Principle Investigators). A portion of this research was conducted using the Linux Clusters for Genetic Analysis (LinGA) computing resources at Boston University Medical Campus. Also supported by National Institute for Diabetes and Digestive and Kidney Diseases (NIDDK) R01 DK078616, NIDDK K24 DK080140 and American Diabetes Association Mentor-Based Postdoctoral Fellowship Award #7-09-MN-32, all to Dr Meigs, a Canadian Diabetes Association Research Fellowship Award to Dr Leong, a research grant from the University of Verona, Italy to Dr Dauriz, and NIDDK Research Career Award K23 DK65978, a Massachusetts General Hospital Physician Scientist Development Award and a Doris Duke Charitable Foundation Clinical Scientist Development Award to Dr Florez. FIA3: We are indebted to the study participants who dedicated their time and samples to these studies. We thank Åsa Ågren (Umeå Medical Biobank) for data organization and Kerstin Enquist and Thore Johansson (Västerbottens County Council) for technical assistance with DNA extraction. This particular project was supported by project grants from the Swedish Heart-Lung Foundation, Umeå Medical Research Foundation and Västerbotten County Council. The Genetics Epidemiology of Metabolic Syndrome (GEMS) Study: We thank Metabolic Syndrome GEMs investigators: Scott Grundy, Jonathan Cohen, Ruth McPherson, Antero Kesaniemi, Robert Mahley, Tom Bersot, Philip Barter and Gerard Waeber. We gratefully acknowledge the contributions of the study personnel at each of the collaborating sites: John Farrell, Nicholas Nikolopoulos and Maureen Sutton (Boston); Judy Walshe, Monica Prentice, Anne Whitehouse, Julie Butters and Tori Nicholls (Australia); Heather Doelle, Lynn Lewis and Anna Toma (Canada); Kari Kervinen, Seppo Poykko, Liisa Mannermaa and Sari Paavola (Finland); Claire Hurrel, Diane Morin, Alice Mermod, Myriam Genoud and Roger Darioli (Switzerland); Guy Pepin, Sibel Tanir, Erhan Palaoglu, Kerem Ozer, Linda Mahley and Aysen Agacdiken (Turkey); and Deborah A. Widmer, Rhonda Harris and Selena Dixon (United States). Funding for the GEMS study was provided by GlaxoSmithKline. GeneSTAR: The Johns Hopkins Genetic Study of Atherosclerosis Risk (GeneSTAR) Study was supported by NIH grants through the National Heart, Lung, and Blood Institute (HL58625-01A1, HL59684, HL071025-01A1, U01HL72518, HL112064, and HL087698) and the National Institute of Nursing Research (NR0224103) and by M01-RR000052 to the Johns Hopkins General Clinical Research Center. Genotyping services were provided through the RS&G Service by the Northwest Genomics Center at the University of Washington, Department of Genome Sciences, under U.S. Federal Government contract number HHSN268201100037C from the National Heart, Lung, and Blood Institute. GLACIER: We are indebted to the study participants who dedicated their time, data and samples to the GLACIER Study as part of the Västerbottens hälsoundersökningar (Västerbottens Health Survey). We thank John Hutiainen and Åsa Ågren (Northern Sweden Biobank) for data organization and Kerstin Enquist and Thore Johansson (Västerbottens County Council) for extracting DNA. We also thank M. Sterner, M. Juhas and P. Storm (Lund University Diabetes Center) for their expert technical assistance with genotyping and genotype data preparation. The GLACIER Study was supported by grants from Novo Nordisk, the Swedish Research Council, Påhlssons Foundation, The Heart Foundation of Northern Sweden, the Swedish Heart Lung Foundation, the Skåne Regional Health Authority, Umeå Medical Research Foundation and the Wellcome Trust. This particular project was supported by project grants from the Swedish Heart-Lung Foundation, the Swedish Research Council, the Swedish Diabetes Association, Påhlssons Foundation and Novo nordisk (all grants to P. W. Franks). GOMAP (Genetic Overlap between Metabolic and Psychiatric Disease): This work was funded by the Wellcome Trust (098051). We thank all participants for their important contribution. We are grateful to Georgia Markou, Laiko General Hospital Diabetes Centre, Maria Emetsidou and Panagiota Fotinopoulou, Hippokratio General Hospital Diabetes Centre, Athina Karabela, Dafni Psychiatric Hospital, Eirini Glezou and Marios Matzioros, Dromokaiteio Psychiatric Hospital, Angela Rentari, Harokopio University of Athens, and Danielle Walker, Wellcome Trust Sanger Institute. Generation Scotland: Scottish Family Health Study (GS:SFHS): GS:SFHS is funded by the Chief Scientist Office of the Scottish Government Health Directorates, grant number CZD/16/6 and the Scottish Funding Council. Exome array genotyping for GS:SFHS was funded by the Medical Research Council UK and performed at the Wellcome Trust Clinical Research Facility Genetics Core at Western General Hospital, Edinburgh, UK. We also acknowledge the invaluable contributions of the families who took part in the Generation Scotland: Scottish Family Health Study, the general practitioners and Scottish School of Primary Care for their help in recruiting them, and the whole Generation Scotland team, which includes academic researchers, IT staff, laboratory technicians, statisticians and research managers. The chief investigators of Generation Scotland are David J. Porteous (University of Edinburgh), Lynne Hocking (University of Aberdeen), Blair Smith (University of Dundee), and Sandosh Padmanabhan (University of Glasgow). GSK (CoLaus, GEMS, Lolipop): We thank the GEMS Study Investigators: Philip Barter, PhD; Y. Antero Kesäniemi, PhD; Robert W. Mahley, PhD; Ruth McPherson, FRCP; and Scott M. Grundy, PhD. Dr Waeber MD, the CoLaus PI’s Peter Vollenweider MD and Gerard Waeber MD, the LOLIPOP PI’s, Jaspal Kooner MD and John Chambers MD, as well as the participants in all the studies. The GEMS study was sponsored in part by GlaxoSmithKline. The CoLaus study was supported by grants from GlaxoSmithKline, the Swiss National Science Foundation (Grant 33CSCO-122661) and the Faculty of Biology and Medicine of Lausanne. Health ABC: The Health, Aging and Body Composition (HABC) Study is supported by NIA contracts N01AG62101, N01AG62103 and N01AG62106. The exome-wide association study was funded by NIA grant 1R01AG032098-01A1 to Wake Forest University Health Sciences and was supported in part by the Intramural Research Program of the NIH, National Institute on Aging (Z01 AG000949-02 and Z01 AG007390-07, Human subjects protocol UCSF IRB is H5254-12688-11). Portions of this study utilized the high-performance computational capabilities of the Biowulf Linux cluster at the National Institutes of Health, Bethesda, MD. (http:/biowulf.nih.gov). Health2008: The Health2008 cohort was supported by the Timber Merchant Vilhelm Bang’s Foundation, the Danish Heart Foundation (Grant number 07-10-R61-A1754-B838-22392F), and the Health Insurance Foundation (Helsefonden) (Grant number 2012B233). HELIC: This work was funded by the Wellcome Trust (098051) and the European Research Council (ERC-2011-StG 280559-SEPI). The MANOLIS cohort is named in honour of Manolis Giannakakis, 1978–2010. We thank the residents of Anogia and surrounding Mylopotamos villages, and of the Pomak villages, for taking part. The HELIC study has been supported by many individuals who have contributed to sample collection (including Antonis Athanasiadis, Olina Balafouti, Christina Batzaki, Georgios Daskalakis, Eleni Emmanouil, Chrisoula Giannakaki, Margarita Giannakopoulou, Anastasia Kaparou, Vasiliki Kariakli, Stella Koinaki, Dimitra Kokori, Maria Konidari, Hara Koundouraki, Dimitris Koutoukidis, Vasiliki Mamakou, Eirini Mamalaki, Eirini Mpamiaki, Maria Tsoukana, Dimitra Tzakou, Katerina Vosdogianni, Niovi Xenaki, Eleni Zengini), data entry (Thanos Antonos, Dimitra Papagrigoriou, Betty Spiliopoulou), sample logistics (Sarah Edkins, Emma Gray), genotyping (Robert Andrews, Hannah Blackburn, Doug Simpkin, Siobhan Whitehead), research administration (Anja Kolb-Kokocinski, Carol Smee, Danielle Walker) and informatics (Martin Pollard, Josh Randall). INCIPE: NIcole Soranzo’s research is supported by the Wellcome Trust (Grant Codes WT098051 and WT091310), the EU FP7 (EPIGENESYS Grant Code 257082 and BLUEPRINT Grant Code HEALTH-F5-2011-282510). Inter99: The Inter99 was initiated by Torben Jørgensen (PI), Knut Borch-Johnsen (co-PI), Hans Ibsen and Troels F. Thomsen. The steering committee comprises the former two and Charlotta Pisinger. The study was financially supported by research grants from the Danish Research Council, the Danish Centre for Health Technology Assessment, Novo Nordisk Inc., Research Foundation of Copenhagen County, Ministry of Internal Affairs and Health, the Danish Heart Foundation, the Danish Pharmaceutical Association, the Augustinus Foundation, the Ib Henriksen Foundation, the Becket Foundation and the Danish Diabetes Association. Genetic studies of both Inter99 and Health 2008 cohorts were funded by the Lundbeck Foundation and produced by The Lundbeck Foundation Centre for Applied Medical Genomics in Personalised Disease Prediction, Prevention and Care (LuCamp, www.lucamp.org ). The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent Research Center at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation (www.metabol.ku.dk). InterAct Consortium: Funding for the InterAct project was provided by the EU FP6 programme (grant number LSHM_CT_2006_037197). We thank all EPIC participants and staff for their contribution to the study. We thank the lab team at the MRC Epidemiology Unit for sample management and Nicola Kerrison for data management. IPM BioMe Biobank: The Mount Sinai IPM BioMe Program is supported by The Andrea and Charles Bronfman Philanthropies. Analyses of BioMe data was supported in part through the computational resources and staff expertise provided by the Department of Scientific Computing at the Icahn School of Medicine at Mount Sinai. The Insulin Resistance Atherosclerosis Family Study (IRASFS): The IRASFS was conducted and supported by the National Institute of Diabetes and Digestive and Kidney Diseases (HL060944, HL061019, and HL060919). Exome chip genotyping and data analyses were funded in part by grants DK081350 and HG007112. A subset of the IRASFS exome chips were contributed with funds from the Department of Internal Medicine at the University of Michigan. Computing resources were provided, in part, by the Wake Forest School of Medicine Center for Public Health Genomics. The Insulin Resistance Atherosclerosis Study (IRAS): The IRAS was conducted and supported by the National Institute of Diabetes and Digestive and Kidney Diseases (HL047887, HL047889, HL047890 and HL47902). Exome chip genotyping and data analyses were funded in part by grants DK081350 and HG007112). Computing resources were provided, in part, by the Wake Forest School of Medicine Center for Public Health Genomics. JHS: The JHS is supported by contracts HHSN268201300046C, HHSN268201300047C, HHSN268201300048C, HHSN268201300049C, HHSN268201300050C from the National Heart, Lung and Blood Institute and the National Institute on Minority Health and Health Disparities. ExomeChip genotyping was supported by the NHLBI of the National Institutes of Health under award number R01HL107816 to S. Kathiresan. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The London Life Sciences Prospective Population (LOLIPOP) Study: We thank the co-primary investigators of the LOLIPOP study: Jaspal Kooner, John Chambers and Paul Elliott. The LOLIPOP study is supported by the National Institute for Health Research Comprehensive Biomedical Research Centre Imperial College Healthcare NHS Trust, the British Heart Foundation (SP/04/002), the Medical Research Council (G0700931), the Wellcome Trust (084723/Z/08/Z) and the National Institute for Health Research (RP-PG-0407-10371). MAGIC: Data on glycaemic traits were contributed by MAGIC investigators and were downloaded from www.magicinvestigators.org. MESA: The Multi-Ethnic Study of Atherosclerosis (MESA) and MESA SHARe project are conducted and supported by contracts N01-HC-95159 through N01-HC-95169 and RR-024156 from the National Heart, Lung, and Blood Institute (NHLBI). Funding for MESA SHARe genotyping was provided by NHLBI Contract N02-HL-6-4278. MESA Family is conducted and supported in collaboration with MESA investigators; support is provided by grants and co
    corecore